If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49=4.9t^2
We move all terms to the left:
49-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+49=0
a = -4.9; b = 0; c = +49;
Δ = b2-4ac
Δ = 02-4·(-4.9)·49
Δ = 960.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-\sqrt{960.4}}{2*-4.9}=\frac{0-\sqrt{960.4}}{-9.8} =-\frac{\sqrt{}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+\sqrt{960.4}}{2*-4.9}=\frac{0+\sqrt{960.4}}{-9.8} =\frac{\sqrt{}}{-9.8} $
| 3r+18/12=2r-18/2 | | 2.1d=52.24 | | 45=3-7x | | 5/6x+8=18 | | 49=4.9t2 | | 3(2x-4)-5x=6 | | 9-3(2x-1)=4(x+2) | | -16+3m=7(m-2)-4m | | 2(4x+7)=-42+32 | | -5+2x=-2 | | c/3=-15 | | x+25+2x=-2-2x-8 | | 200m-125m+47,750=50,750-175m | | 2x÷3=x÷6+1 | | 3t-6=t=10 | | 14x+9x-5=-29(1-x) | | |3(x+1)+6|=15 | | 10/x+9=5/4 | | 3/8y-1/4=1/3 | | 176+2x+26=146+2x | | 2+5h=7+2h | | 2.9=6.1-0.4x | | 13+n=n^2+9n | | -0.9x+0.8x+7=9 | | 9x=1/2(12x) | | 3x+2-6x+8=46 | | r/4=r+5/6 | | 3w^2-11w+42=0 | | 4x-(8-x)=3x-18 | | 2x+4=3x+3(x-2) | | 1+6n-4n=-9 | | 4-i*6+2i=0 |